
Entanglement dynamics and decoherence of three-qubit system in a fermionic environment

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 2761

(http://iopscience.iop.org/0305-4470/38/12/016)

Download details:

IP Address: 171.66.16.66

The article was downloaded on 02/06/2010 at 20:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 2761–2772 doi:10.1088/0305-4470/38/12/016

Entanglement dynamics and decoherence of
three-qubit system in a fermionic environment

Xiao San Ma, An Min Wang, Xiao Dong Yang and Hao You

Department of Modern Physics, University of Science and Technology of China, Hefei, 230026,
People’s Republic of China

E-mail: anmwang@ustc.edu.cn

Received 23 November 2004, in final form 1 February 2005
Published 9 March 2005
Online at stacks.iop.org/JPhysA/38/2761

Abstract
We study the entanglement dynamics of the three-qubit system in a symmetry-
broken environment consisting of a fermionic bath. Decoherence induced
by the bath is analysed. We find that the entanglement of states will
decrease or remain unchanged under the system–bath interaction. The class of
decoherence-free states of the three-qubit system of our model has been found
out.

PACS numbers: 03.67.Mn, 03.65.Yz

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entanglement is one of the inherent features of quantum mechanics [1], and it also plays
an important role in quantum information processing (QIP). As such, entanglement is worth
studying in every respect. The dynamics of entanglement is an interesting problem. To some
extent, the dynamics of entanglement is the time evolution of entanglement measure [2–5].
More recently, much effort has been devoted to thermal entanglement [6], i.e. quantifying
entanglement produced by a thermal bath with the temperature at which the equilibrium is
reached. In this context the entanglement dynamics is studied mainly based on a master
equation and Markovian approximation [7]. In QIP, decoherence is another essential problem
that deserves some attention. Generally, decoherence is used to estimate the deviation from
an ideal state.

Multi-qubit systems are of interest to be investigated both theoretically and experimentally.
In recent years, a lot of achievements have been obtained on the application of three-qubit states
to QIP [8–11], so understanding of entanglement and decoherence of the three-qubit system
under environment is important for us in QIP. Entanglement dynamics and decoherence have
been studied in the frame of various models [12–15]. In [15], the authors have considered
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a transverse Ising model (TIM) and studied the concurrence of a bipartite system under a
symmetry-broken environment. A model such as the long-range Ising model introduced in
[14] (IM) has two features. Firstly, the bath density is assumed to be a thermal distribution,
that is ρb = (e−Hb/T )/Z, with T the bath temperature multiplied by the Boltzmann constant,
and Z = Tr(e−Hb/T ) the partition function. Secondly, the bath Hamiltonian Hb needs to be
a symmetry breakable one, that is endowed with phase transition in the degrees of freedom
that provide the coupling with the system. In [15], the authors have an analysis by adding
a transverse field to the thermal bath, investigating eventually a transverse Ising model bath
Hamiltonian (TIM). Our work is developed based on the model studied in [15].

In this paper, we make an extension of the model from the two-qubit system to the three-
qubit system, keeping the symmetry-broken environment unchanged. By using the mean field
approximation (MF), we study the entanglement dynamics and decoherence of the three-qubit
system in the environment. Such an extension involves the related entanglement measure and
decoherence definition; we will employ the entanglement measure [16] and linear entropy
[17] as a measure for decoherence to investigate entanglement dynamics and decoherence.

The paper is organized as follows: in section 2, we make an extension of the model. We
give our main results in section 3. Finally, in section 4 we give the conclusion.

2. The model and some notation

We consider a general model consisting of a system and a thermal bath, and the model
is described by the Hamiltonian H = Hs + Hsb + Hb, where Hs,Hb and Hsb denote the
Hamiltonian of the system, bath and system–bath interaction respectively. One is often
interested in the evolution of a reduced system density matrix by which one can know the
entanglement dynamics and decoherence. While under the precondition that the Hamiltonian
is time independent, the whole density matrix evolves

ρ(t) = e−iHtρ(0) eiHt (1)

where we assume that the initial density ρ(0) is separable between the system and bath, i.e.
ρ(0) = ρs(0)⊗ ρb. The bath density matrix is assumed to be ρb = e(−HB/T )/Z. We are
interested in the reduced system density matrix ρs(t) which can be obtained by tracing out the
degree of freedom of the thermal bath,

ρs(t) = Trb(ρ(t)). (2)

The Hamiltonian form is the deterministic factor in the analysis of entanglement dynamics
and decoherence.

2.1. Hamiltonian form

We extend the system Hamiltonian of the TIM model in [15] from two-qubit to three-qubit
and assume that the system qubits, labelled as A, B and C, interact with each other and with
the spin bath,

Hs = −ξ0
(
Sz

ASz
B + Sz

BSz
C + Sz

ASz
C

)
(3)

Hsb = − J0√
N

(
Sz

A + Sz
B + Sz

C

) ∑
k

Sz
k (4)

Hb = −ω
∑

k

Sx
k − J

N

∑
i,k

Sz
i S

z
k (5)
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where ξ0 is the coupling constant between qubits, J0, J are exchange coupling constants and
ω is the strength of the transverse field; all these are non-negative constants. The indices of
the sum run from 1 to N.

It is not difficult to deal with the above Hamiltonian except for Hb because of the nonlinear
term. But by using the mean field approximation (MF), we can do it easily. Details concerning
the MF are explained in [18]. We will use the MF directly:

H mf
b = −ω

∑
k

Sx
k − 2Jm

∑
k

Sz
k + m2JN (6)

where m is the order parameter of the phase transition. Its absolute value ranges from 0 to 1
2

as long as the temperature ranges from the critical value TC = J/2 to 0. Using the mean field
approximation, we obtain a Curie–Weiss equation in [18],

�

J
= tanh

�

2T
(7)

and the quantity � = ±
√

ω2 + 4m2J 2. For the Hb z symmetry, so every thing will remain
true with substitution m → −m or � → −�. We will take the positive values of m and � in
the following text for convenience.

2.2. Entanglement measure definition for the three-qubit system

There are several kinds of definitions of entanglement measure of the three-qubit system. In
this paper, we will employ that proposed by Vidal in [16] as an entanglement measure. Based
on Pere’s criterion for separability [19], given a system state ρs either pure or mixed, Vidal
et al introduce a computable entanglement measure defined as the negativity to quantify the
degree to which ρTA

s fails to be positive,

N(ρs) =
∥∥ρTA

s

∥∥ − 1

2
(8)

where ρTA
s is the partial transpose of ρs with respect to party A and

∥∥ρTA
s

∥∥ means the sum of
absolute values of eigenvalues of ρTA

s , that is∥∥ρTA
s

∥∥ =
∑

i

|λi | =
∑

i

λi + 2
∑

j

|λj |

where λi is the eigenvalue of ρTA
s and λj is the negative eigenvalue among λi , with the known

relation ∑
i

λi = Tr
(
ρTA

s

) = 1.

Then we know that N(ρs) corresponds to the absolute value of the sum of negative eigenvalues
of ρTA

s [20], and vanishes for unentangled states.
Vidal has proved that N(ρs) does not increase under LOCC (local operation and classical

communication), i.e. it is an entanglement monotone. For the case of three-party state ρABC,
we can compute the sum of negative eigenvalues of ρ

TC
ABC which is the partial transpose of ρABC

with respect to party C, N(AB)−C(ρABC) is automatically an entanglement monotone, which
quantifies the strength of quantum correlation between party C and the joint of two parties
(AB). Similarly, the negativities N(AC)−B(ρABC) and N(BC)−A(ρABC) are two other monotonic
functions under LOCC with analogous meaning.

When the party C is separable from the two parties (AB), we can also consider the
entanglement properties of two-party reduced density matrices ρAB = TrC(ρABC). The
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negativity of the reduced system density matrix ρAB, NA−B;C, can be used to quantify the
residual entanglement, and NA−C;B, NB−C;A are of analogous meaning. Thus, we have six
computable functions to quantify the entanglement of any tripartite system including the
system we consider here.

2.3. Measure for decoherence

We usually are interested in the derivation from an ideal, usually pure state with time changing,
i.e. the dynamics is decoherence. Generally, the mixed states and pure states will decohere
when exposed to environment. Here, we will consider the general case of either a pure or a
mixed system state exposed to environment. As we know, usually pure states will become
mixed when interacting with environment, and the mixed states like pure states will lose
purity to become more mixed than ever for the system–bath interaction; thus, we can use the
evolution of purity of a state to estimate the decoherence under environment.

To some extent, decoherence can be considered a symbol to express the reduction of
purity. Therefore, we use

S(t) = F
(
Tr

(
ρ2

s (t)
))

(9)

as a function of decoherence. Here the function S is a monotonic decreasing function of purity
of the system state Tr

(
ρ2

s (t)
)
. One least complicated case [17] is

S(t) = 1 − Tr(ρs(t)
2) (10)

which is usually called linear entropy. Linear entropy has been applied to measure both
entanglement and decoherence for different perspectives. In the view of the specific form
of linear entropy, it is a function of purity of state and the purity is a sound expression to
symbolize the environment effect; so linear entropy is often used to measure decoherence. A
similar study has been carried out on decoherence by using linear entropy in [21, 22]. In this
paper, we will employ linear entropy to estimate the decoherence of the three-qubit system in
a fermionic environment.

3. Main results

We consider a general three-qubit pure quantum state

|ψ〉 = a|000〉 + b|001〉 + c|010〉 + d|011〉 + e|100〉 + f |101〉 + g|110〉 + h|111〉 (11)

as the initial system state, where the parameters satisfy the relation for normalization
|a2| + |b2| + |c2| + |d2| + |e2| + |f 2| + |g2| + |h2| = 1. For mixed states, the following
calculation still holds. Then the whole density matrix

ρ(0) = ρs(0) ⊗ ρb = |ψ〉〈ψ | ⊗ ρb. (12)

For the commutation relation between Hs and Hsb + Hb, the evolution of the whole density
matrix is

ρ(t) = 1

Z

[
e−it (Hs+Hsb+H mf

b )ρs(0) e−H mf
b /T eit (Hs+Hsb+H mf

b )
]

= e−m2JN

Z
exp

{
it

∑
k

[(
J0√
N

(
Sz

A + Sz
B + Sz

C

)
+ 2mJ

)
Sz

k + ωSx
k

]}



Entanglement dynamics and decoherence of three-qubit system in a fermionic environment 2765

× ρ ′
s exp

{
(1/T )

(
ω

∑
k

Sx
k + 2Jm

∑
k

Sz
k

)}

× exp

{
−it

∑
k

[(
J0√
N

(
Sz

A + Sz
B + Sz

C

)
+ 2mJ

)
Sz

k + ωSx
k

]}
(13)

where ρ ′
s = eitξ0(S

z
ASz

B+Sz
BSz

C+Sz
ASz

C)ρs(0) e−itξ0(S
z
ASz

B+Sz
BSz

C+Sz
ASz

C). The reduced system matrix can be
obtained by tracing out the degree of freedom of the bath

ρs(t) = Trb(ρ(t)). (14)

Now, our main task is to give an analytical result for ρs(t). Before we give the final
reduced matrix of the system, we first introduce some formulae to simplify the calculation.
Firstly, we take Q as the following form:

Q = (q1σx + q2σz) =
(

q2 q1

q1 −q2

)
(15)

with q1, q2 real coefficients. The exponentiation of Q gives

eQ = (cosh q)I +
sinh q

q
Q; eiQ = (cos q)I + i

sin q

q
Q (16)

where q =
√

q2
1 + q2

2 and I is the identity operator with rank 2. Similarly, the partition function

Z will take the following value as the Hamiltonian of the thermal bath H mf
b in equation (6) has

a similar form to Q in equation (15):

Z = e−m2JN/T

{(
2 cosh

�

2T

)N
}

. (17)

Secondly, we apply the formulae of equations (15) and (16) to equation (14) to calculate the
reduced system matrix as shown in equation (14), and obtain the following expression:∏
k

Trb{eiI ′
eR eĩI } = 2N

(
cosh

�

2T

)N (
cos

(
(u − v)tmJJ0

2�
√

N

)
+ i

�

J
sin

(
(u − v)tmJJ0

2�
√

N

))N

.

(18)

Note that we get equation (18) under the approximation of neglecting the O
(

1
N

)
for N large.

In equation (18) u and v are results of left and right spin operators of the system acting on the
different elements of the system density matrix respectively in equation (14). Since the system
density matrix can be expanded by a set of bases, we can calculate the time evolution of the
basis used to expand the system density matrix based on the structure of the Hamiltonian form
to get the final resulting system density matrix. For example, we take one basis as |010〉〈110|;
then[(

J0√
N

(
Sz

01 + Sz
02 + Sz

03

)
+ 2mJ

)
Sz

k + ωSx
k

]
× |010〉〈110|

[(
J0√
N

(
Sz

01 + Sz
02 + Sz

03

)
+ 2mJ

)
Sz

k + ωSx
k

]
=

[(
J0

2
√

N
+ 2mJ

)
Sz

k + ωSx
k

]
|010〉〈110|

[( −J0

2
√

N
+ 2mJ

)
Sz

k + ωSx
k

]
. (19)
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Now in equation (19) u = 1 and v = −1. Here I ′, R and Ĩ in equation (18) take the following
forms:

I ′ = t

[(
uJ0

2
√

N
+ 2mJ

)
Sz

k + ωSx
k

]
(20)

R = (
ωSx

k + 2mJSz
k

)/
T (21)

Ĩ = −t

[(
vJ0

2
√

N
+ 2mJ

)
Sz

k + ωSx
k

]
. (22)

Finally, we get the reduced density matrix ρs(t),

|a|2 M12 M13 M14 M15 M16 M17 ah∗A6

M21 |b|2 bc∗ bd∗A2 be∗ bf ∗A2 bg∗A2 M28

M31 cb∗ |c|2 cd∗A2 ce∗ cf ∗A2 cg∗A2 M38

M41 db∗A∗
2 dc∗A∗

2 |d|2 de∗A∗
2 df ∗ dg∗ M48

M51 eb∗ ec∗ ed∗A2 |e|2 ef ∗A2 eg∗A2 M58

M61 f b∗A∗
2 f c∗A∗

2 f d∗ f e∗A∗
2 |f |2 fg∗ M68

M71 gb∗A∗
2 gc∗A∗

2 gd∗ ge∗A∗
2 gf ∗ |g|2 M78

ha∗A∗
6 M82 M83 M84 M85 M86 M87 |h|2


. (23)

For convenience, we use Mij to represent the corresponding element of the density matrix,
where

M12 = M∗
21 = ab∗ ei(ξ0t)A2, M13 = M∗

31 = ac∗ ei(ξ0t)A2,

M14 = M∗
41 = ad∗ ei(ξ0t)A4 M15 = M∗

51 = ae∗ ei(ξ0t)A2,

M16 = M∗
61 = af ∗ ei(ξ0t)A4, M17 = M∗

71 = ag∗ ei(ξ0t)A4

M28 = M∗
82 = bh∗ e−i(ξ0t)A4, M38 = M∗

83 = ch∗ e−i(ξ0t)A4,

M48 = M∗
84 = dh∗ e−i(ξ0t)A2 M58 = M∗

85 = eh∗ e−i(ξ0t)A4,

M68 = M∗
86 = f h∗ e−i(ξ0t)A2, M78 = M∗

87 = gh∗ e−i(ξ0t)A2

Au−v =
(

cos

(
(u − v)tmJJ0

2�
√

N

)
+ i

�

J
sin

(
(u − v)tmJJ0

2�
√

N

))N

(24)

and ∗ represents complex conjugation. In the limit of large N we can approximate it as

|Au−v| ≈ exp

(
− (u − v)2t2J 2

0 m2

8

(
J 2

�2
− 1

))
(25)

where u and v are defined as in equations (18)–(22). So far, we have obtained the final
time-dependent density matrix.

3.1. Entanglement evolution

In practice, we are interested in some explicit cases which are of promising use in QIP. We will
study the six computable functions to quantify the entanglement of the final states resulted
from initial states, either pure quantum states or mixed ones.

Case 1. Obviously, we find that the diagonal states of the three-qubit do not change during
the interaction with the thermal bath, therefore the negativities of ρdiag are zero forever, where
‘diag’ means diagonal. The diagonal states we consider here belong to the class states whose
density matrices are diagonal and positive matrices with unit trace. For example, the density
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matrix ρs(0) = 1
2 (|000〉〈000| + |111〉〈111|) is one diagonal state. For any diagonal state in the

fermionic environment we consider here, we get ρdiag(t) = ρdiag(0) and

N(ρdiag(t)) = N(ρdiag(0)) = 0. (26)

Here the negativities include the six computable functions. If we expose diagonal states to the
environment, they will remain still, and so do their entanglement and decoherence.

Case 2. Let us set the parameters in equation (11), a = h = 1√
2
, other parameters are zero, that

is the GHZ state (note that all GHZ states in this paper are the same) |ψ〉 = 1√
2
(|000〉 + |111〉)

as the initial state. When exposed to the environment, the initial state evolves into the resultant
state ρGHZ(t). After calculation, we get

N(AB)−C(ρGHZ(t)) = 1
2 |A6| (27)

where |A6| is |Au−v|, when u − v equals 6 (note that following |A4| and |A2| are of analogous
meaning). Obviously, the entanglement of the GHZ state shows an exponential decay with
time as the entanglement of initial state is 1

2 , i.e. N(AB)−C(ρGHZ(0)) = 1
2 . Similarly, we can

know that both N(BC)−A(ρGHZ(t)) and N(AC)−B(ρGHZ(t)) are the same as N(AB)−C(ρGHZ(t))

for symmetry. For the reduced density of two parties, NA−B;C is zero and the other two are the
same. When time goes to infinity, any of the negativities we calculated here will be zero, and
we get the final state ρGHZ(t → ∞) = (

1
2 |000〉〈000| + |111〉〈111|) which obviously possesses

no entanglement.

Case 3. If we choose the W state |ψ〉 = 1√
3
(|001〉 + |010〉 + |100〉) as the initial state, that

is the state in equation (11) with b = c = e = 1√
3

and other parameters zero, it is easy to
find that the environment has no effect on the entanglement of the W state ρWp. We get the
entanglement

N(AB)−C(ρWp(t)) = N(AB)−C(ρWp(0)) = 0.4714 (28)

NA−B;C(ρWp(t)) = NA−B;C(ρWp(0)) = 0.206. (29)

The other four negativities have corresponding values for symmetry. Actually, we can obtain
such a result from the reduced system matrix in equation (23) straightforwardly because the
W state does not perceive the symmetry-broken environment. To have a second look at the
reduced system density matrix, we have no difficulty in finding that the W class states have
the same property as the one singled out here. W class states will be explained later in
subsection 3.3. On the basis of the result, we can say that the W state is strong under the
environment, so the W state is the appropriate candidate for the information carrier under the
system–bath interaction.

Case 4. Given a = g = 1√
2
, the state |ψ〉 = 1√

2
(‖00〉 + b|11〉) ⊗ |0〉 with the corresponding

density matrix is a partially separable state as the party C is separable from the two parties
(AB). The effective density matrix of (AB), ρAB = TrC(ρABC), may still retain some of
the original entanglement. The negativity of ρAB, NA−B;C, can be used to quantify the
residual entanglement. The residual entanglement of the state quoted here is given as
NA−B;C(ρAB(0)) = 1

2 . The residual entanglement of the state will evolve as described in
the following equation when the state is exposed to the environment,

NA−B;C(ρAB(t) = 1
2 |A4|. (30)

Obviously, the entanglement decreases exponentially to 0 where the state density matrix is a
diagonal one.
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Figure 1. Entanglement versus scaled time J0t . The figure on the left describes the entanglement
evolution of the GHZ state at different temperatures of the bath. While the entanglement evolutions
of different states at a fixed temperature of T/TC = 0.35 are shown in the figure on the right,
ω = 0.1 and J = 2.

Case 5. Having given some examples of pure states, we should study the entanglement
evolution of a mixed state. Here, a mixed state

ρABC = 1
2 |000〉〈000| + 1

6 |010〉〈010| + 1
4 (|000〉〈011| + |011〉〈000|) + 1

3 |011〉〈011| (31)

with negativities N(AB)−C(ρABC(0)) = N(AC)−B(ρABC(0)) = 0.1802 and N(BC)−A(ρABC) = 0.
The entanglement evolved as described in the following equation

N(AB)−C(ρABC(t)) = NB−C;A(ρBC(t)) = 1
12

(√
1 + 9|A4|2 − 1

)
(32)

and N(AC)−B(ρABC(t)) are the same as N(AB)−C(ρABC(t)), where ρBC(t) = TrA(ρABC(t)). The
entanglement of the mixed state also decreases under the system–bath interaction. The final
state of such an evolution will be a completely separable state.

From the above five cases, we find that, except for the W state, the other quantum
entangled states, either pure or mixed, here will lose entanglement when interacting with the
environment stated in this paper. We also find that the rates of entanglement loss are different
for different states; in the case of the three-qubit system, the entanglement of the GHZ state
gradually decreases faster than that of other states (see figure 1).

3.2. Decoherence

In this paper, we will use the linear entropy S(t) = 1−Tr
(
ρ2

s (t)
)

to obtain the decoherence for
the system. In fact, we can estimate the decoherence of any state in principle. For simplicity,
we just pick out some examples.

Case 1. Let the initial state be the GHZ state; we can have the decoherence which can be
expressed as a function of S(t),

S(t) = 1
2 (1 − |A6|2) (33)

From equation (33), we find that the GHZ state will decohere when exposed to the environment.
Let t = 0; then S(0) = 0, which indicates that the GHZ state gradually evolves from the pure
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Figure 2. S(t) versus the scaled time J0t . The figures on the left and right describe the evolution
of S(t) of the GHZ state at different temperatures and of different states at a fixed temperature
T/TC = 0.35 respectively. The values of the parameters are ω = 0.1, J = 2.

quantum state into a mixed state. When t → ∞, S(t) = 1
2 , where the final state is mixed as

1
2 (|000〉〈000| + |111〉〈111|).
Case 2. Given the initial state is the W state, we obtain

S(t) = S(0) = 0. (34)

Equation (34) suggests that the TIM environment has no effect on the coherence of the W
state. Due to the same state structure, the W class states do not perceive the presence of the
environment either. Therefore, the W class states are more robust than other states here under
such a system–bath interaction.

Case 3. We pick out |ψ〉 = 1√
2
(|00〉 + |11〉) ⊗ |0〉 as the initial state,

S(t) = 1
2 (1 − |A4|2). (35)

It is easy to find that the pure state will turn into a mixed state if the interaction with environment
lasts for a long time. The initial state will become a diagonal state as 1

2 (|000〉〈000|+|110〉〈110|)
when t is infinite.

Case 4. Here, we will consider the decoherence of a mixed state which is the same as the
above one used to study entanglement dynamics, that is ρABC = 1

2 |000〉〈000| + 1
6 |010〉〈010| +

1
4 (|000〉〈011| + |011〉〈000|) + 1

3 |011〉〈011|. After a simple calculation, the function to measure
decoherence is

S(t) = 11
18 − 1

8 |A4|2. (36)

And the final state is ρABC(t → ∞) = 1
2 |000〉〈000| + 1

6 |010〉〈010| + 1
3 |011〉〈011|. Obviously,

the environment makes the mixed state lose the coherence term.
Decoherence induced by the symmetry-broken environment has been illustrated in the

above four cases. Except for the W class states and diagonal states, any other state will
decohere under the interaction between the system and thermal bath. While the speeds of
decoherence loss are different for different states, in the present three-qubit system, the GHZ
state decoheres faster than any other state (see figure 2).
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3.3. Further discussion

From the results of subsections 3.1 and 3.2, it is easy to find that the W state does not perceive
the environment, and we give a second thought that the W class states have the same property
as the W state. Here, we will further discuss the robustness of the W class states and other
states under the environment.

In the case of the three-qubit system, any state can be expanded by a set of bases of E as

ρs =
7∑

α,β=0

cαβEαβ (37)

where Eαβ = |αAαBαC〉〈βAβBβC|, αA, αB, αC, βA, βB, βC take values 0 or 1 and cαβ is
constant. For example, E07 = |000〉〈111|. Thus we call a class of states ρW as
W class states if the class of states can be expanded by the basis EW = {E11, E22, . . . , E66,

E12, E21, E14, E41, E24, E42, E35, E53, E36, E63, E56, E65}, that is

ρW =
∑
γ,δ

wγ δEγδ (38)

where wγδ is constant, and Eγδ ∈ EW. Let us consider one basis E35(0) = |011〉〈101〉 and
the time evolution

E35(t) = Trb(e
−iHtE35(0) ⊗ ρb eiHt )

= Trb(e
−i(Hsb+Hb)t |011〉〈101| ⊗ ρb ei(Hsb+Hb)t )

=
[

2cosh

(
�

2T

)]−N

Trb

{∏
k

eit[ J0√
N

(Sz
A+Sz

B+Sz
C)+ωSx

k ]|011〉〈101|

× e(ωSx
k +2mJSz

k )/T e−it[ J0√
N

(Sz
A+Sz

B+Sz
C)+ωSx

k ]

}

= |011〉〈101|
[

2cosh

(
�

2T

)]−N ∏
k

Tr{eiIγ eR eiĨδ }

= E35(0)

[
2cosh

(
�

2T

)]−N ∏
k

Tr{eiIγ eR eiĨδ } (39)

where

Iγ = t

[( −J0

2
√

N
+ 2mJ

)
Sz

k + ωSx
k

]
R = (

2mJSz
k + ωSx

k

)/
T

Ĩδ = −t

[( −J0

2
√

N
+ 2mJ

)
Sz

k + ωSx
k

] . (40)

In fact, the above quantities are special cases of equations (20)–(22), when u = −1 and
v = −1. By using our previous result of equation (18), we get the following expression:∏

k

Tr{eiIγ eR eiĨδ } =
[

2cosh

(
�

2T

)]N

. (41)

Combination of equations (39) and (41) will give the final result

E35(t) = E35(0). (42)
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Analogously, we can prove that any basis Eγδ of EW remains unchanged under the fermionic
environment, i.e. if Eγδ ∈ EW, then

Eγδ(t) = Eγδ(0). (43)

Since the W class states can be expanded by the set of EW, i.e.

ρW(0) =
∑
γ δ

wγ δEγδ(0), (44)

the evolution of W class states can be expressed as

ρW(t) =
∑
γ δ

wγ δEγδ(t). (45)

With equations (43)–(45), the evolution of W class states is obtained,

ρW(t) =
∑
γ δ

wγ δEγδ(0) = ρW(0). (46)

So the W class states do not perceive the presence of the environment.
Similarly, we can prove that the environment has no effect on the basis E00 or E77

as it does on E35. While the diagonal states ρdiag can be expanded by the set of bases
Ediag = {E00, E11, E22, . . . , E77}, thus we can prove that the environment has no effect on
diagonal states either.

We apply a similar process to any basis Eαβ ∈ E which does not belong to EW or
Ediag, and find that Eαβ will decohere under the environment. So far we have got the class
of decoherence-free states ρDF of our model, and ρDF can be expanded by the set of bases
EDF = EW ∪ Ediag. Of course, ρDF remains unchanged under the system–bath interaction.
Any state which cannot be expanded by EDF will decohere under the environment, and evolve
into a resulting state belonging to ρDF after a long time.

4. Conclusion

Entanglement dynamics and decoherence of the three-qubit system in a symmetry-broken
fermionic environment are studied. By using the mean field approximation, we obtain
analytical results of entanglement evolution and decoherence by employing negativity and
linear entropy respectively. The model considered in this paper is an extension of that in
the work [15] from two-qubit to three-qubit, and it resembles an array of Rydberg atoms
interacting with a cavity mode of radiation field [14]. In such instances, we can select three
atoms as a system to represent the three-qubit system in our model.

In this paper, we have analysed the evolution of entanglement and coherence of the three-
qubit system. We find that, except for the class of decoherence-free states ρDF, any other state
will lose coherence under the symmetry-broken environment. The entanglement of any state
belonging to the class states ρDF remains unchanged, while that of other states will decrease
or remain constant due to the system–bath interaction. In the cases considered in this paper,
we find that the GHZ state loses entanglement or coherence faster than the other states do. We
also find that the speeds of disentanglement (loss of entanglement) and decoherence depend
on temperature too. From the figures, the lower the value of T/TC, the longer time the states
remain entangled.

In conclusion, we believe our analysis is helpful for a better understanding of entanglement
dynamics and decoherence.
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